New Steiner 2-designs from old ones by paramodifications

Techniques of producing new combinatorial structures from old ones are commonly called trades. The switching principle applies for a broad class of designs: it is a local transformation that modifies two columns of the incidence matrix. In this paper, we present a construction, which is a generaliza...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Mezőfi Dávid
Nagy Gábor Péter
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:DISCRETE APPLIED MATHEMATICS 288
Tárgyszavak:
doi:10.1016/j.dam.2020.08.026

mtmt:31616227
Online Access:http://publicatio.bibl.u-szeged.hu/29115
LEADER 01564nab a2200241 i 4500
001 publ29115
005 20231218120924.0
008 231218s2021 hu o 0|| Angol d
022 |a 0166-218X 
024 7 |a 10.1016/j.dam.2020.08.026  |2 doi 
024 7 |a 31616227  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Mezőfi Dávid 
245 1 0 |a New Steiner 2-designs from old ones by paramodifications  |h [elektronikus dokumentum] /  |c  Mezőfi Dávid 
260 |c 2021 
300 |a 114-122 
490 0 |a DISCRETE APPLIED MATHEMATICS  |v 288 
520 3 |a Techniques of producing new combinatorial structures from old ones are commonly called trades. The switching principle applies for a broad class of designs: it is a local transformation that modifies two columns of the incidence matrix. In this paper, we present a construction, which is a generalization of the switching transform for the class of Steiner 2-designs. We call this construction paramodification of Steiner 2-designs, since it modifies the parallelism of a subsystem. We study in more detail the paramodifications of affine planes, Steiner triple systems, and abstract unitals. Computational results show that paramodification can construct many new unitals. 
650 4 |a Matematika 
700 0 1 |a Nagy Gábor Péter  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/29115/2/31616227_megjelent.pdf  |z Dokumentum-elérés  
856 4 0 |u http://publicatio.bibl.u-szeged.hu/29115/1/MezofiNagyNewSteiner2-designsfromoldonesbyparamodifications2020.pdf  |z Dokumentum-elérés