New Steiner 2-designs from old ones by paramodifications

Techniques of producing new combinatorial structures from old ones are commonly called trades. The switching principle applies for a broad class of designs: it is a local transformation that modifies two columns of the incidence matrix. In this paper, we present a construction, which is a generaliza...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Mezőfi Dávid
Nagy Gábor Péter
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:DISCRETE APPLIED MATHEMATICS 288
Tárgyszavak:
doi:10.1016/j.dam.2020.08.026

mtmt:31616227
Online Access:http://publicatio.bibl.u-szeged.hu/29115
Leíró adatok
Tartalmi kivonat:Techniques of producing new combinatorial structures from old ones are commonly called trades. The switching principle applies for a broad class of designs: it is a local transformation that modifies two columns of the incidence matrix. In this paper, we present a construction, which is a generalization of the switching transform for the class of Steiner 2-designs. We call this construction paramodification of Steiner 2-designs, since it modifies the parallelism of a subsystem. We study in more detail the paramodifications of affine planes, Steiner triple systems, and abstract unitals. Computational results show that paramodification can construct many new unitals.
Terjedelem/Fizikai jellemzők:114-122
ISSN:0166-218X