Computational memory capacity predicts aging and cognitive decline

Memory is a crucial cognitive function that deteriorates with age. However, this ability is normally assessed using cognitive tests instead of the architecture of brain networks. Here, we use reservoir computing, a recurrent neural network computing paradigm, to assess the linear memory capacities o...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Mijalkov M.
Storm L.
Zufiria-Gerbolés B.
Veréb Dániel
Xu Z.
Canal-Garcia A.
Sun J.
Chang Y.-W
Zhao H.
Gómez-Ruiz E.
Passaretti M.
Garcia-Ptacek S.
Kivipelto M.
Svenningsson P.
Zetterberg H.
Jacobs H.
Lüdge K.
Brunner D.
Mehlig B.
Volpe G.
Pereira J.B
Dokumentumtípus: Cikk
Megjelent: 2025
Sorozat:NATURE COMMUNICATIONS 16 No. 1
Tárgyszavak:
doi:10.1038/s41467-025-57995-0

mtmt:36079579
Online Access:http://publicatio.bibl.u-szeged.hu/37174
Leíró adatok
Tartalmi kivonat:Memory is a crucial cognitive function that deteriorates with age. However, this ability is normally assessed using cognitive tests instead of the architecture of brain networks. Here, we use reservoir computing, a recurrent neural network computing paradigm, to assess the linear memory capacities of neural-network reservoirs extracted from brain anatomical connectivity data in a lifespan cohort of 636 individuals. The computational memory capacity emerges as a robust marker of aging, being associated with resting-state functional activity, white matter integrity, locus coeruleus signal intensity, and cognitive performance. We replicate our findings in an independent cohort of 154 young and 72 old individuals. By linking the computational memory capacity of the brain network with cognition, brain function and integrity, our findings open new pathways to employ reservoir computing to investigate aging and age-related disorders. © The Author(s) 2025.
Terjedelem/Fizikai jellemzők:14
ISSN:2041-1723