On the variance of the mean width of random polytopes circumscribed around a convex body

Let be a convex body in in which a ball rolls freely and which slides freely in a ball. Let be the intersection of i.i.d. random half‐spaces containing chosen according to a certain prescribed probability distribution. We prove an asymptotic upper bound on the variance of the mean width of as . We a...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Bakó-Szabó Alexandra
Fodor Ferenc
Dokumentumtípus: Cikk
Megjelent: 2024
Sorozat:MATHEMATIKA 70 No. 4
Tárgyszavak:
doi:10.1112/mtk.12266

mtmt:35140959
Online Access:http://publicatio.bibl.u-szeged.hu/35063
Leíró adatok
Tartalmi kivonat:Let be a convex body in in which a ball rolls freely and which slides freely in a ball. Let be the intersection of i.i.d. random half‐spaces containing chosen according to a certain prescribed probability distribution. We prove an asymptotic upper bound on the variance of the mean width of as . We achieve this result by first proving an asymptotic upper bound on the variance of the weighted volume of random polytopes generated by i.i.d. random points selected according to certain probability distributions, then, using polarity, we transfer this to the circumscribed model.
Terjedelem/Fizikai jellemzők:13
ISSN:0025-5793