On the Dimensions of Hermitian Subfield Subcodes from Higher-Degree Places

The focus of our research is the examination of Hermitian curves over finite fields, specifically concentrating on places of degree three and their role in constructing Hermitian codes. We begin by studying the structure of the Riemann–Roch space associated with these degree-three places, aiming to...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: El Khalfaoui Sabira
Nagy Gábor Péter
Dokumentumtípus: Cikk
Megjelent: 2024
Sorozat:ENTROPY 26 No. 5
Tárgyszavak:
doi:10.3390/e26050386

mtmt:34864412
Online Access:http://publicatio.bibl.u-szeged.hu/32868
LEADER 01819nab a2200229 i 4500
001 publ32868
005 20240611081142.0
008 240611s2024 hu o 000 eng d
022 |a 1099-4300 
024 7 |a 10.3390/e26050386  |2 doi 
024 7 |a 34864412  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a eng 
100 2 |a El Khalfaoui Sabira 
245 1 3 |a On the Dimensions of Hermitian Subfield Subcodes from Higher-Degree Places  |h [elektronikus dokumentum] /  |c  El Khalfaoui Sabira 
260 |c 2024 
300 |a 22 
490 0 |a ENTROPY  |v 26 No. 5 
520 3 |a The focus of our research is the examination of Hermitian curves over finite fields, specifically concentrating on places of degree three and their role in constructing Hermitian codes. We begin by studying the structure of the Riemann–Roch space associated with these degree-three places, aiming to determine essential characteristics such as the basis. The investigation then turns to Hermitian codes, where we analyze both functional and differential codes of degree-three places, focusing on their parameters and automorphisms. In addition, we explore the study of subfield subcodes and trace codes, determining their structure by giving lower bounds for their dimensions. This presents a complex problem in coding theory. Based on numerical experiments, we formulate a conjecture for the dimension of some subfield subcodes of Hermitian codes. Our comprehensive exploration seeks to deepen the understanding of Hermitian codes and their associated subfield subcodes related to degree-three places, thus contributing to the advancement of algebraic coding theory and code-based cryptography. 
650 4 |a Matematika 
700 0 1 |a Nagy Gábor Péter  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/32868/1/aaa.pdf  |z Dokumentum-elérés