Nicotinic-acid derivative BGP-15 improves diastolic function in a rabbit model of atherosclerotic cardiomyopathy
Background and purpose: Small molecule BGP-15 has been reported to alleviate signs of heart failure and improve muscle function in murine models. Here, we investigated the acute and chronic effects of BGP-15 in a rabbit model of atherosclerotic cardiomyopathy. Experimental approach: Rabbits were mai...
Saved in:
Main Authors: | |
---|---|
Format: | Article |
Published: |
2022
|
Series: | BRITISH JOURNAL OF PHARMACOLOGY
179 No. 10 |
Subjects: | |
doi: | 10.1111/bph.15749 |
mtmt: | 32555207 |
Online Access: | http://publicatio.bibl.u-szeged.hu/29853 |
Summary: | Background and purpose: Small molecule BGP-15 has been reported to alleviate signs of heart failure and improve muscle function in murine models. Here, we investigated the acute and chronic effects of BGP-15 in a rabbit model of atherosclerotic cardiomyopathy. Experimental approach: Rabbits were maintained on standard chow (Control) or atherogenic diet (HC) for 16 weeks. BGP-15 was administered intravenously (once) or orally (for 16 weeks), to assess acute and chronic effects. Cardiac function was evaluated by echocardiography, endothelium-dependent vasorelaxation was assessed, and key molecules of the protein kinase G (PKG) axis were examined by ELISA and Western blot. Passive force generation was investigated in skinned cardiomyocytes. Key results: Both acute and chronic BGP-15 treatment improved the diastolic performance of the diseased heart, however, vasorelaxation and serum lipid markers were unaffected. Myocardial cGMP levels were elevated in the BGP-15-treated group, along with preserved PKG activity and increased phospholamban Ser16-phosphorylation. PDE5 expression decreased in the BGP-15-treated group, and the substance inhibited PDE1 enzyme. Cardiomyocyte passive tension reduced in BGP-15-treated rabbits, the ratio of titin N2BA/N2B isoforms increased, and PKG-dependent N2B-titin phosphorylation elevated in the BGP-15-treated group. Conclusions and implications: Here we report that BGP-15-treatment improves diastolic function, reduces cardiomyocyte stiffness, and restores titin compliance in a rabbit model of atherosclerotic cardiomyopathy by increasing the activity of the cGMP-PKG axis. As BGP-15 is proven to be safe, it may have clinical value in the treatment of diastolic dysfunction. |
---|---|
Physical Description: | 2240-2258 |
ISSN: | 0007-1188 |