Polymorphism-homogeneity and universal algebraic geometry

We assign a relational structure to any finite algebra in a canonical way,using solution sets of equations, and we prove that this relational structureis polymorphism-homogeneous if and only if the algebra itself ispolymorphism-homogeneous. We show that polymorphism-homogeneity is alsoequivalent to...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Tóth Endre
Waldhauser Tamás
Dokumentumtípus: Cikk
Megjelent: 2022
Sorozat:DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE 23 No. 2
Tárgyszavak:
doi:10.46298/dmtcs.6904

mtmt:33572459
Online Access:http://publicatio.bibl.u-szeged.hu/28144
Leíró adatok
Tartalmi kivonat:We assign a relational structure to any finite algebra in a canonical way,using solution sets of equations, and we prove that this relational structureis polymorphism-homogeneous if and only if the algebra itself ispolymorphism-homogeneous. We show that polymorphism-homogeneity is alsoequivalent to the property that algebraic sets (i.e., solution sets of systemsof equations) are exactly those sets of tuples that are closed under thecentralizer clone of the algebra. Furthermore, we prove that the aforementionedproperties hold if and only if the algebra is injective in the category of itsfinite subpowers. We also consider two additional conditions: a strongervariant for polymorphism-homogeneity and for injectivity, and we describeexplicitly the finite semilattices, lattices, Abelian groups and monounaryalgebras satisfying any one of these three conditions.
Terjedelem/Fizikai jellemzők:18
ISSN:1462-7264