Core-Shell Structured PLGA Particles Having Highly Controllable Ketoprofen Drug Release

The non-steroid anti-inflammatory drug ketoprofen (KP) as a model molecule is encapsulated in different poly(lactide-co-glycolide) (PLGA) nanostructured particles, using Tween20 (TWEEN) and Pluronic F127 (PLUR) as stabilizers to demonstrate the design of a biocompatible colloidal carrier particles w...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Varga Norbert
Bélteki Rita
Juhász Ádám
Csapó Edit
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:PHARMACEUTICS 15 No. 5
Tárgyszavak:
doi:10.3390/pharmaceutics15051355

mtmt:33784094
Online Access:http://publicatio.bibl.u-szeged.hu/27098
Leíró adatok
Tartalmi kivonat:The non-steroid anti-inflammatory drug ketoprofen (KP) as a model molecule is encapsulated in different poly(lactide-co-glycolide) (PLGA) nanostructured particles, using Tween20 (TWEEN) and Pluronic F127 (PLUR) as stabilizers to demonstrate the design of a biocompatible colloidal carrier particles with highly controllable drug release feature. Based on TEM images the formation of well-defined core-shell structure is highly favorable using nanoprecipitation method. Stabile polymer-based colloids with ~200–210 nm hydrodynamic diameter can be formed by successful optimization of the KP concentration with the right choice of stabilizer. Encapsulation efficiency (EE%) of 14–18% can be achieved. We clearly confirmed that the molecular weight of the stabilizer thus its structure greatly controls the drug release from the PLGA carrier particles. It can be determined that ~20% and ~70% retention is available with the use of PLUR and TWEEN, respectively. This measurable difference can be explained by the fact that the non-ionic PLUR polymer provides a steric stabilization of the carrier particles in the form of a loose shell, while the adsorption of the non-ionic biocompatible TWEEN surfactant results in a more compact and well-ordered shell around the PLGA particles. In addition, the release property can be further tuned by decreasing the hydrophilicity of PLGA by changing the monomer ratio in the range of ~20–60% (PLUR) and 70–90% (TWEEN).
Terjedelem/Fizikai jellemzők:13
ISSN:1999-4923