5-Arylidenerhodanines as P-gp Modulators An Interesting Effect of the Carboxyl Group on ABCB1 Function in Multidrug-Resistant Cancer Cells /

Multidrug resistance (MDR) is considered one of the major mechanisms responsible for the failure of numerous anticancer and antiviral chemotherapies. Various strategies to overcome the MDR phenomenon have been developed, and one of the most attractive research directions is focused on the inhibition...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Zeslawska Ewa
Tejchman Waldemar
Kincses Annamária
Spengler Gabriella
Nitek Wojciech
Zuchowski Grzegorz
Szymanska Ewa
Dokumentumtípus: Cikk
Megjelent: 2022
Sorozat:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 23 No. 18
Tárgyszavak:
doi:10.3390/ijms231810812

mtmt:33179818
Online Access:http://publicatio.bibl.u-szeged.hu/25690
Leíró adatok
Tartalmi kivonat:Multidrug resistance (MDR) is considered one of the major mechanisms responsible for the failure of numerous anticancer and antiviral chemotherapies. Various strategies to overcome the MDR phenomenon have been developed, and one of the most attractive research directions is focused on the inhibition of MDR transporters, membrane proteins that extrude cytotoxic drugs from living cells. Here, we report the results of our studies on a series newly synthesized of 5-arylidenerhodanines and their ability to inhibit the ABCB1 efflux pump in mouse T-lymphoma cancer cells. In the series, compounds possessing a triphenylamine moiety and the carboxyl group in their structure were of particular interest. These amphiphilic compounds showed over 17-fold stronger efflux pump inhibitory effects than verapamil. The cytotoxic and antiproliferative effects of target rhodanines on T-lymphoma cells were also investigated. A putative binding mode for 11, one of the most potent P-gp inhibitors tested here, was predicted by molecular docking studies and discussed with regard to the binding mode of verapamil.
Terjedelem/Fizikai jellemzők:16
ISSN:1661-6596