Peripheral Blood Stem Cell Mobilization and Engraftment after Autologous Stem Cell Transplantation with Biosimilar rhG-CSF

INTRODUCTION: Biosimilar versions of filgrastim [recombinant human granulocyte colony-stimulating factor (rhG-CSF)] are now widely available. To date, biosimilar rhG-CSF has demonstrated a comparable quality, safety and efficacy profile to the originator product (filgrastim [Neupogen((R))], Amgen In...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Reményi Péter
Gopcsa László
Marton Imelda
Réti Marienn Györgyi
Mikala Gábor
Pető Mónika
Barta Anikó
Bátai Árpád
Farkas Zita
Borbényi Zita
Csukly Zoltán
Bodó Imre
Fábián János
Király Ágnes
Lengyel Lilla
Piukovics Klára
Torbágyi Éva
Masszi Tamás
Dokumentumtípus: Cikk
Megjelent: 2014
Sorozat:ADVANCES IN THERAPY 31 No. 4
Tárgyszavak:
doi:10.1007/s12325-014-0114-z

mtmt:2583911
Online Access:http://publicatio.bibl.u-szeged.hu/25685
Leíró adatok
Tartalmi kivonat:INTRODUCTION: Biosimilar versions of filgrastim [recombinant human granulocyte colony-stimulating factor (rhG-CSF)] are now widely available. To date, biosimilar rhG-CSF has demonstrated a comparable quality, safety and efficacy profile to the originator product (filgrastim [Neupogen((R))], Amgen Inc., CA, USA) in the prevention and management of neutropenia. Biosimilar rhG-CSFs have also been used to induce peripheral blood stem cell (PBSC) mobilization in patients undergoing autologous stem cell transplantation (AHSCT). The authors have examined the effectiveness of a biosimilar rhG-CSF (Zarzio((R)), Sandoz Biopharmaceuticals, Holzkirchen, Germany) in two retrospective studies across two medical centers in Hungary. METHODS: In Study 1, 70 patients with hematological malignancies scheduled to undergo AHSCT received chemotherapy followed by biosimilar rhG-CSF (2 x 5 mug) for facilitating neutrophil, leukocyte, and platelet engraftment. In study 2, 40 additional patients with lymphoid malignancies and planned AHSCT received chemotherapy followed by biosimilar rhG-CSF for PBSC mobilization. The effectiveness of treatment was assessed by the average yield of cluster of differentiation (CD) 34+ cells and the number of leukaphereses required. RESULTS: In Study 1 (patients undergoing AHSCT), the median age was 56 years and most patients were male (60%). The conditioning regimens were mainly high-dose melphalan (n = 41) and carmustine (BiCNU((R)), Bristol-Myers Squibb, NJ, USA), etoposide, cytarabine and melphalan BEAM (n = 21). Median times to absolute neutrophil and leukocyte engraftment were 9 (range 8-11 days) and 10 (8-12) days, respectively. Median time to platelet engraftment was 10.5 days (7-19 days). In Study 2, the patients' median age was 54 years and the majority (57.5%) were female. The median time interval between day 1 of mobilizing chemotherapy and first leukapheresis was 12 (9-27) days. In the autologous PBSC grafts, the median number of CD34+ cells harvested was 5.2 x 10(6)/kg (2.22-57.07 x 10(6)/kg). The median yield of CD34+ cells per leukapheresis product was 2.47 x 10(6)/kg. In total, 58 leukaphereses were performed in 40 successfully harvested patients. CONCLUSIONS: In line with previous studies with originator rhG-CSF, the findings of this study indicate that biosimilar rhG-CSF following AHSCT is effective and generally well tolerated in the engraftment setting. In addition, biosimilar rhG-CSF is comparable to the originator rhG-CSF in terms of kinetics of PBSC mobilization and yield of CD34+ cells. In conclusion, the authors have demonstrated that the use of biosimilar rhG-CSF is effective and safe in autologous PBSC mobilization and engraftment after AHSCT.
Terjedelem/Fizikai jellemzők:451-460
ISSN:0741-238X