Hopf bifurcations in Nicholson’s blowfly equation are always supercritical

We prove that all Hopf bifurcations in the Nicholson’s blowfly equation are supercritical as we increase the delay. Earlier results treated only the first bifurcation point, and to determine the criticality of the bifurcation, one needed to substitute the parameters into a lengthy formula of the fir...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Balázs István
Röst Gergely
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 31 No. 5
Tárgyszavak:
doi:10.1142/S0218127421500711

mtmt:32002154
Online Access:http://publicatio.bibl.u-szeged.hu/23765
LEADER 01215nab a2200229 i 4500
001 publ23765
005 20220301125133.0
008 220301s2021 hu o 0|| Angol d
022 |a 0218-1274 
024 7 |a 10.1142/S0218127421500711  |2 doi 
024 7 |a 32002154  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Balázs István 
245 1 0 |a Hopf bifurcations in Nicholson’s blowfly equation are always supercritical  |h [elektronikus dokumentum] /  |c  Balázs István 
260 |c 2021 
300 |a Terjedelem: 5 p-Azonosító: 2150071 
490 0 |a INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS  |v 31 No. 5 
520 3 |a We prove that all Hopf bifurcations in the Nicholson’s blowfly equation are supercritical as we increase the delay. Earlier results treated only the first bifurcation point, and to determine the criticality of the bifurcation, one needed to substitute the parameters into a lengthy formula of the first Lyapunov coefficient. With our result, there is no need for such calculations at any bifurcation point. 
650 4 |a Matematika 
700 0 1 |a Röst Gergely  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/23765/1/BalazsRost2021.pdf  |z Dokumentum-elérés