Hopf bifurcations in Nicholson’s blowfly equation are always supercritical
We prove that all Hopf bifurcations in the Nicholson’s blowfly equation are supercritical as we increase the delay. Earlier results treated only the first bifurcation point, and to determine the criticality of the bifurcation, one needed to substitute the parameters into a lengthy formula of the fir...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2021
|
Sorozat: | INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
31 No. 5 |
Tárgyszavak: | |
doi: | 10.1142/S0218127421500711 |
mtmt: | 32002154 |
Online Access: | http://publicatio.bibl.u-szeged.hu/23765 |
Tartalmi kivonat: | We prove that all Hopf bifurcations in the Nicholson’s blowfly equation are supercritical as we increase the delay. Earlier results treated only the first bifurcation point, and to determine the criticality of the bifurcation, one needed to substitute the parameters into a lengthy formula of the first Lyapunov coefficient. With our result, there is no need for such calculations at any bifurcation point. |
---|---|
Terjedelem/Fizikai jellemzők: | Terjedelem: 5 p-Azonosító: 2150071 |
ISSN: | 0218-1274 |