Hopf bifurcations in Nicholson’s blowfly equation are always supercritical

We prove that all Hopf bifurcations in the Nicholson’s blowfly equation are supercritical as we increase the delay. Earlier results treated only the first bifurcation point, and to determine the criticality of the bifurcation, one needed to substitute the parameters into a lengthy formula of the fir...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Balázs István
Röst Gergely
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 31 No. 5
Tárgyszavak:
doi:10.1142/S0218127421500711

mtmt:32002154
Online Access:http://publicatio.bibl.u-szeged.hu/23765
Leíró adatok
Tartalmi kivonat:We prove that all Hopf bifurcations in the Nicholson’s blowfly equation are supercritical as we increase the delay. Earlier results treated only the first bifurcation point, and to determine the criticality of the bifurcation, one needed to substitute the parameters into a lengthy formula of the first Lyapunov coefficient. With our result, there is no need for such calculations at any bifurcation point.
Terjedelem/Fizikai jellemzők:Terjedelem: 5 p-Azonosító: 2150071
ISSN:0218-1274