The dimeric Golgi protein Gorab binds to Sas6 as a monomer to mediate centriole duplication
The duplication and ninefold symmetry of the Drosophila centriole requires that the cartwheel molecule, Sas6, physically associates with Gorab, a trans-Golgi component. How Gorab achieves these disparate associations is unclear. Here, we use hydrogen-deuterium exchange mass spectrometry to define Go...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2021
|
Sorozat: | ELIFE
10 |
Tárgyszavak: | |
doi: | 10.7554/eLife.57241 |
mtmt: | 32367729 |
Online Access: | http://publicatio.bibl.u-szeged.hu/23418 |
Tartalmi kivonat: | The duplication and ninefold symmetry of the Drosophila centriole requires that the cartwheel molecule, Sas6, physically associates with Gorab, a trans-Golgi component. How Gorab achieves these disparate associations is unclear. Here, we use hydrogen-deuterium exchange mass spectrometry to define Gorab's interacting surfaces that mediate its subcellular localization. We identify a core stabilization sequence within Gorab's C-terminal coiled-coil domain that enables homodimerization, binding to Rab6, and thereby trans-Golgi localization. By contrast, part of the Gorab monomer's coiled-coil domain undergoes an antiparallel interaction with a segment of the parallel coiled-coil dimer of Sas6. This stable heterotrimeric complex can be visualized by electron microscopy. Mutation of a single leucine residue in Sas6's Gorab-binding domain generates a Sas6 variant with a sixteenfold reduced binding affinity for Gorab that cannot support centriole duplication. Thus, Gorab dimers at the Golgi exist in equilibrium with Sas6-associated monomers at the centriole to balance Gorab's dual role. |
---|---|
Terjedelem/Fizikai jellemzők: | Terjedelem: 24-Azonosító: e57241 |
ISSN: | 2050-084X |