A comprehensive study of the Ca2+ ion binding of fluorescently labelled BAPTA analogues
Since its development, the ionophore BAPTA (1,2?bis(2?aminophenoxy)-ethane?N,N,N?,N??tetraacetic acid) has been used unchanged in calcium sensing applications. In this work we present a comprehensive experimental and theoretical study of novel alterations in the structure of BAPTA, with a focus on t...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2021
|
Sorozat: | EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
2021 No. 37 |
Tárgyszavak: | |
doi: | 10.1002/ejoc.202100948 |
mtmt: | 32187933 |
Online Access: | http://publicatio.bibl.u-szeged.hu/23156 |
Tartalmi kivonat: | Since its development, the ionophore BAPTA (1,2?bis(2?aminophenoxy)-ethane?N,N,N?,N??tetraacetic acid) has been used unchanged in calcium sensing applications. In this work we present a comprehensive experimental and theoretical study of novel alterations in the structure of BAPTA, with a focus on the systematic modification of the chain connecting the two aromatic rings of the molecule (denoted as ?linker?). A bis-(diethylamino)xantene fluorophore was also attached to the structures in a fixed position and the structure-fluorescence response relationship of these molecules was investigated in addition. The effect of the length of the linker, the number of O atoms in this chain and even the removal of one of the rings was tested; these all proved to significantly alter the characteristics of the compounds. For example, it was found that the second aromatic ring of BAPTA is not essential for the turn-on of the fluorescence. We also demonstrated that successful sensing can be realized even by replacing the chain with a single oxygen atom, which suggests the availability of a new calcium binding mode of the chelator. The reliable turn-on characteristic, the steep Ca 2+ fluorescence titration curve and the intense fluorescence emission combine to make this compound a prospective candidate as a calcium sensing molecular probe in diagnostic neurobiological applications. |
---|---|
Terjedelem/Fizikai jellemzők: | 5248-5261 |
ISSN: | 1434-193X |