Potent Chimeric Antimicrobial Derivatives of the Medicago truncatula NCR247 Symbiotic Peptide

In Rhizobium-legume symbiosis, the bacteria are converted into nitrogen-fixing bacteroids. In many legume species, differentiation of the endosymbiotic bacteria is irreversible, culminating in definitive loss of their cell division ability. This terminal differentiation is mediated by plant peptides...

Full description

Saved in:
Bibliographic Details
Main Authors: Jenei Sándor
Tiricz Hilda
Szolomájer János
Tímár Edit
Klement Éva
Bouni Mohamad Anas Al
Lima Rui Maria Dániel
Kata Diána
Harmati Mária
Buzás Krisztina
Földesi Imre
Tóth Gábor K.
Endre Gabriella
Kondorosi Éva
Format: Article
Published: 2020
Series:FRONTIERS IN MICROBIOLOGY 11
doi:10.3389/fmicb.2020.00270

mtmt:31281264
Online Access:http://publicatio.bibl.u-szeged.hu/18613
Description
Summary:In Rhizobium-legume symbiosis, the bacteria are converted into nitrogen-fixing bacteroids. In many legume species, differentiation of the endosymbiotic bacteria is irreversible, culminating in definitive loss of their cell division ability. This terminal differentiation is mediated by plant peptides produced in the symbiotic cells. In Medicago truncatula more than similar to 700 nodule-specific cysteine-rich (NCR) peptides are involved in this process. We have shown previously that NCR247 and NCR335 have strong antimicrobial activity on various pathogenic bacteria and identified interaction of NCR247 with many bacterial proteins, including FtsZ and several ribosomal proteins, which prevent bacterial cell division and protein synthesis. In this study we designed and synthetized various derivatives of NCR247, including shorter fragments and various chimeric derivatives. The antimicrobial activity of these peptides was tested on the ESKAPE bacteria; Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli as a member of Enterobacteriaceae and in addition Listeria monocytogenes and Salmonella enterica. The 12 amino acid long C-terminal half of NCR247, NCR247C partially retained the antimicrobial activity and preserved the multitarget interactions with partners of NCR247. Nevertheless NCR247C became ineffective on S. aureus, P. aeruginosa, and L. monocytogenes. The chimeric derivatives obtained by fusion of NCR247C with other peptide fragments and particularly with a truncated mastoparan sequence significantly increased bactericidal activity and altered the antimicrobial spectrum. The minimal bactericidal concentration of the most potent derivatives was 1.6 mu M, which is remarkably lower than that of most classical antibiotics. The killing activity of the NCR247-based chimeric peptides was practically instant. Importantly, these peptides had no hemolytic activity or cytotoxicity on human cells. The properties of these NCR derivatives make them promising antimicrobials for clinical use.
Physical Description:Azonosító: 270-Terjedelem: 10 p
ISSN:1664-302X