Dowker-type theorems for hyperconvex discs

A hyperconvex disc of radius r is a planar set with nonempty interior that is the intersection of closed circular discs of radius r . A convex disc-polygon of radius r is a set with nonempty interior that is the intersection of a finite number of closed circular discs of radius r . We prove that the...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Fejes Tóth Gábor
Fodor Ferenc
Dokumentumtípus: Cikk
Megjelent: 2015
Sorozat:PERIODICA MATHEMATICA HUNGARICA 70 No. 2
doi:10.1007/s10998-014-0071-y

mtmt:2488534
Online Access:http://publicatio.bibl.u-szeged.hu/16252
LEADER 01349nab a2200217 i 4500
001 publ16252
005 20190726132229.0
008 190726s2015 hu o 0|| angol d
022 |a 0031-5303 
024 7 |a 10.1007/s10998-014-0071-y  |2 doi 
024 7 |a 2488534  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a angol 
100 2 |a Fejes Tóth Gábor 
245 1 0 |a Dowker-type theorems for hyperconvex discs  |h [elektronikus dokumentum] /  |c  Fejes Tóth Gábor 
260 |c 2015 
300 |a 131-144 
490 0 |a PERIODICA MATHEMATICA HUNGARICA  |v 70 No. 2 
520 3 |a A hyperconvex disc of radius r is a planar set with nonempty interior that is the intersection of closed circular discs of radius r . A convex disc-polygon of radius r is a set with nonempty interior that is the intersection of a finite number of closed circular discs of radius r . We prove that the maximum area and perimeter of convex disc- n -gons of radius r contained in a hyperconvex disc of radius r are concave functions of n , and the minimum area and perimeter of disc- n -gons of radius r containing a hyperconvex disc of radius r are convex functions of n . We also consider hyperbolic and spherical versions of these statements. 
700 0 1 |a Fodor Ferenc  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/16252/1/DOWKER-SZTEPubl.pdf  |z Dokumentum-elérés