Dowker-type theorems for hyperconvex discs
A hyperconvex disc of radius r is a planar set with nonempty interior that is the intersection of closed circular discs of radius r . A convex disc-polygon of radius r is a set with nonempty interior that is the intersection of a finite number of closed circular discs of radius r . We prove that the...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2015
|
Sorozat: | PERIODICA MATHEMATICA HUNGARICA
70 No. 2 |
doi: | 10.1007/s10998-014-0071-y |
mtmt: | 2488534 |
Online Access: | http://publicatio.bibl.u-szeged.hu/16252 |
LEADER | 01349nab a2200217 i 4500 | ||
---|---|---|---|
001 | publ16252 | ||
005 | 20190726132229.0 | ||
008 | 190726s2015 hu o 0|| angol d | ||
022 | |a 0031-5303 | ||
024 | 7 | |a 10.1007/s10998-014-0071-y |2 doi | |
024 | 7 | |a 2488534 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a angol | ||
100 | 2 | |a Fejes Tóth Gábor | |
245 | 1 | 0 | |a Dowker-type theorems for hyperconvex discs |h [elektronikus dokumentum] / |c Fejes Tóth Gábor |
260 | |c 2015 | ||
300 | |a 131-144 | ||
490 | 0 | |a PERIODICA MATHEMATICA HUNGARICA |v 70 No. 2 | |
520 | 3 | |a A hyperconvex disc of radius r is a planar set with nonempty interior that is the intersection of closed circular discs of radius r . A convex disc-polygon of radius r is a set with nonempty interior that is the intersection of a finite number of closed circular discs of radius r . We prove that the maximum area and perimeter of convex disc- n -gons of radius r contained in a hyperconvex disc of radius r are concave functions of n , and the minimum area and perimeter of disc- n -gons of radius r containing a hyperconvex disc of radius r are convex functions of n . We also consider hyperbolic and spherical versions of these statements. | |
700 | 0 | 1 | |a Fodor Ferenc |e aut |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/16252/1/DOWKER-SZTEPubl.pdf |z Dokumentum-elérés |