Dowker-type theorems for hyperconvex discs

A hyperconvex disc of radius r is a planar set with nonempty interior that is the intersection of closed circular discs of radius r . A convex disc-polygon of radius r is a set with nonempty interior that is the intersection of a finite number of closed circular discs of radius r . We prove that the...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Fejes Tóth Gábor
Fodor Ferenc
Dokumentumtípus: Cikk
Megjelent: 2015
Sorozat:PERIODICA MATHEMATICA HUNGARICA 70 No. 2
doi:10.1007/s10998-014-0071-y

mtmt:2488534
Online Access:http://publicatio.bibl.u-szeged.hu/16252
Leíró adatok
Tartalmi kivonat:A hyperconvex disc of radius r is a planar set with nonempty interior that is the intersection of closed circular discs of radius r . A convex disc-polygon of radius r is a set with nonempty interior that is the intersection of a finite number of closed circular discs of radius r . We prove that the maximum area and perimeter of convex disc- n -gons of radius r contained in a hyperconvex disc of radius r are concave functions of n , and the minimum area and perimeter of disc- n -gons of radius r containing a hyperconvex disc of radius r are convex functions of n . We also consider hyperbolic and spherical versions of these statements.
Terjedelem/Fizikai jellemzők:131-144
ISSN:0031-5303