The Radon transform on hyperbolic space

The Radon transform that integrates a function in ${open H}^n$, the $n$-dimensional hyperbolic space, over totally geodesic submanifolds with codimension 1 and the dual Radon transform are investigated in this paper. We prove inversion formulas and an inclusion theorem for the range.

Elmentve itt :
Bibliográfiai részletek
Szerző: Kurusa Árpád
Dokumentumtípus: Cikk
Megjelent: 1991
Sorozat:GEOMETRIAE DEDICATA 40 No. 3
doi:10.1007/BF00189917

mtmt:1118114
Online Access:http://publicatio.bibl.u-szeged.hu/15964
LEADER 00920nab a2200205 i 4500
001 publ15964
005 20220928105848.0
008 190703s1991 hu o 0|| angol d
022 |a 0046-5755 
024 7 |a 10.1007/BF00189917  |2 doi 
024 7 |a 1118114  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a angol 
100 1 |a Kurusa Árpád 
245 1 4 |a The Radon transform on hyperbolic space  |h [elektronikus dokumentum] /  |c  Kurusa Árpád 
260 |c 1991 
300 |a 325-339 
490 0 |a GEOMETRIAE DEDICATA  |v 40 No. 3 
520 3 |a The Radon transform that integrates a function in ${open H}^n$, the $n$-dimensional hyperbolic space, over totally geodesic submanifolds with codimension 1 and the dual Radon transform are investigated in this paper. We prove inversion formulas and an inclusion theorem for the range. 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/15964/1/hypradon.pdf  |z Dokumentum-elérés