The Radon transform on hyperbolic space
The Radon transform that integrates a function in ${open H}^n$, the $n$-dimensional hyperbolic space, over totally geodesic submanifolds with codimension 1 and the dual Radon transform are investigated in this paper. We prove inversion formulas and an inclusion theorem for the range.
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
1991
|
Sorozat: | GEOMETRIAE DEDICATA
40 No. 3 |
doi: | 10.1007/BF00189917 |
mtmt: | 1118114 |
Online Access: | http://publicatio.bibl.u-szeged.hu/15964 |
LEADER | 00920nab a2200205 i 4500 | ||
---|---|---|---|
001 | publ15964 | ||
005 | 20220928105848.0 | ||
008 | 190703s1991 hu o 0|| angol d | ||
022 | |a 0046-5755 | ||
024 | 7 | |a 10.1007/BF00189917 |2 doi | |
024 | 7 | |a 1118114 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a angol | ||
100 | 1 | |a Kurusa Árpád | |
245 | 1 | 4 | |a The Radon transform on hyperbolic space |h [elektronikus dokumentum] / |c Kurusa Árpád |
260 | |c 1991 | ||
300 | |a 325-339 | ||
490 | 0 | |a GEOMETRIAE DEDICATA |v 40 No. 3 | |
520 | 3 | |a The Radon transform that integrates a function in ${open H}^n$, the $n$-dimensional hyperbolic space, over totally geodesic submanifolds with codimension 1 and the dual Radon transform are investigated in this paper. We prove inversion formulas and an inclusion theorem for the range. | |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/15964/1/hypradon.pdf |z Dokumentum-elérés |