The Radon transform on hyperbolic space
The Radon transform that integrates a function in ${open H}^n$, the $n$-dimensional hyperbolic space, over totally geodesic submanifolds with codimension 1 and the dual Radon transform are investigated in this paper. We prove inversion formulas and an inclusion theorem for the range.
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
1991
|
Sorozat: | GEOMETRIAE DEDICATA
40 No. 3 |
doi: | 10.1007/BF00189917 |
mtmt: | 1118114 |
Online Access: | http://publicatio.bibl.u-szeged.hu/15964 |
Tartalmi kivonat: | The Radon transform that integrates a function in ${open H}^n$, the $n$-dimensional hyperbolic space, over totally geodesic submanifolds with codimension 1 and the dual Radon transform are investigated in this paper. We prove inversion formulas and an inclusion theorem for the range. |
---|---|
Terjedelem/Fizikai jellemzők: | 325-339 |
ISSN: | 0046-5755 |