The invertibility of the Radon transform on abstract rotational manifolds of real type

Injectivity and support theorem are proved for the Radon transform on abstract rotational manifolds of real type. The transform is defined by integration over certain rotational submanifolds of codimension 1. Our technique is to use the theory of spherical harmonics. We also get unified closed inver...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Kurusa Árpád
Dokumentumtípus: Cikk
Megjelent: 1992
Sorozat:MATHEMATICA SCANDINAVICA 70 No. 1
doi:10.7146/math.scand.a-12389

mtmt:1118116
Online Access:http://publicatio.bibl.u-szeged.hu/15962
Leíró adatok
Tartalmi kivonat:Injectivity and support theorem are proved for the Radon transform on abstract rotational manifolds of real type. The transform is defined by integration over certain rotational submanifolds of codimension 1. Our technique is to use the theory of spherical harmonics. We also get unified closed inversion formulas for the spaces of constant curvature.
Terjedelem/Fizikai jellemzők:112-126
ISSN:0025-5521