Orbital integrals on the Lorentz space of curvature -1
We present a rotation symmetric model in the Euclidean space for the Lorentzian of curvature -- 1 in which the Lorentzian spheres around all the points of an a priori fixed spacelike totalgeodesic are straightlines. Investigating the mean value operators in this model yields to various representatio...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2000
|
Sorozat: | ARCHIV DER MATHEMATIK
75 No. 2 |
doi: | 10.1007/PL00000433 |
mtmt: | 1118112 |
Online Access: | http://publicatio.bibl.u-szeged.hu/15948 |
Tartalmi kivonat: | We present a rotation symmetric model in the Euclidean space for the Lorentzian of curvature -- 1 in which the Lorentzian spheres around all the points of an a priori fixed spacelike totalgeodesic are straightlines. Investigating the mean value operators in this model yields to various representations of functions by means of their integrals over Lorentzian spheres. |
---|---|
Terjedelem/Fizikai jellemzők: | 132-146 |
ISSN: | 0003-889X |