Hyperbolic is the only Hilbert geometry having circumcenter or orthocenter generally
A Hilbert geometry is hyperbolic if and only if the perpendicular bisectors or the altitudes of any trigon form a pencil. We also prove some interesting characterizations of the ellipse.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2016
|
Sorozat: | BEITRAGE ZUR ALGEBRA UND GEOMETRIE
57 No. 1 |
doi: | 10.1007/s13366-014-0233-3 |
mtmt: | 2821409 |
Online Access: | http://publicatio.bibl.u-szeged.hu/15935 |
Tartalmi kivonat: | A Hilbert geometry is hyperbolic if and only if the perpendicular bisectors or the altitudes of any trigon form a pencil. We also prove some interesting characterizations of the ellipse. |
---|---|
Terjedelem/Fizikai jellemzők: | 243-258 |
ISSN: | 0138-4821 |