The Dirichlet problem in an unbounded cone-like domain for second order elliptic quasilinear equations with variable nonlinearity exponent

In this paper we consider the Dirichlet problem for quasi-linear second-order elliptic equation with the m(x)-Laplacian and the strong nonlinearity on the right side in an unbounded cone-like domain. We study the behavior of weak solutions to the problem at infinity and we find the sharp exponent of...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Borsuk Mikhail
Wiśniewski Damian
Dokumentumtípus: Folyóirat
Megjelent: 2023
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Elliptikus egyenlet, Laplace-egyenlet, Dirichlet probléma
doi:10.14232/ejqtde.2023.1.33

Online Access:http://acta.bibl.u-szeged.hu/82283
Leíró adatok
Tartalmi kivonat:In this paper we consider the Dirichlet problem for quasi-linear second-order elliptic equation with the m(x)-Laplacian and the strong nonlinearity on the right side in an unbounded cone-like domain. We study the behavior of weak solutions to the problem at infinity and we find the sharp exponent of the solution decreasing rate. We show that the exponent is related to the least eigenvalue of the eigenvalue problem for the Laplace–Beltrami operator on the unit sphere.
Terjedelem/Fizikai jellemzők:20
ISSN:1417-3875