Ulam-Hyers stability and exponentially dichotomic evolution equations in Banach spaces
For finite-dimensional linear differential systems with bounded coefficients we prove that their exponential dichotomy on R is equivalent to their Ulam–Hyers stability on R with uniqueness. We also consider abstract non-autonomous evolution equations which are exponentially bounded and exponentially...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2023
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Banach tér, Evolúciós egyenlet |
doi: | 10.14232/ejqtde.2023.1.8 |
Online Access: | http://acta.bibl.u-szeged.hu/82258 |
LEADER | 01221nas a2200205 i 4500 | ||
---|---|---|---|
001 | acta82258 | ||
005 | 20231116103339.0 | ||
008 | 231116s2023 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2023.1.8 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Buică Adriana | |
245 | 1 | 0 | |a Ulam-Hyers stability and exponentially dichotomic evolution equations in Banach spaces |h [elektronikus dokumentum] / |c Buică Adriana |
260 | |c 2023 | ||
300 | |a 10 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a For finite-dimensional linear differential systems with bounded coefficients we prove that their exponential dichotomy on R is equivalent to their Ulam–Hyers stability on R with uniqueness. We also consider abstract non-autonomous evolution equations which are exponentially bounded and exponentially dichotomic and prove that Ulam– Hyers stability with uniqueness is maintained when perturbing them with a nonlinear term having a sufficiently small Lipschitz constant. | |
695 | |a Banach tér, Evolúciós egyenlet | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/82258/1/ejqtde_2023_008.pdf |z Dokumentum-elérés |