Ulam-Hyers stability and exponentially dichotomic evolution equations in Banach spaces

For finite-dimensional linear differential systems with bounded coefficients we prove that their exponential dichotomy on R is equivalent to their Ulam–Hyers stability on R with uniqueness. We also consider abstract non-autonomous evolution equations which are exponentially bounded and exponentially...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Buică Adriana
Dokumentumtípus: Folyóirat
Megjelent: 2023
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Banach tér, Evolúciós egyenlet
doi:10.14232/ejqtde.2023.1.8

Online Access:http://acta.bibl.u-szeged.hu/82258
LEADER 01221nas a2200205 i 4500
001 acta82258
005 20231116103339.0
008 231116s2023 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2023.1.8  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Buică Adriana 
245 1 0 |a Ulam-Hyers stability and exponentially dichotomic evolution equations in Banach spaces  |h [elektronikus dokumentum] /  |c  Buică Adriana 
260 |c 2023 
300 |a 10 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a For finite-dimensional linear differential systems with bounded coefficients we prove that their exponential dichotomy on R is equivalent to their Ulam–Hyers stability on R with uniqueness. We also consider abstract non-autonomous evolution equations which are exponentially bounded and exponentially dichotomic and prove that Ulam– Hyers stability with uniqueness is maintained when perturbing them with a nonlinear term having a sufficiently small Lipschitz constant. 
695 |a Banach tér, Evolúciós egyenlet 
856 4 0 |u http://acta.bibl.u-szeged.hu/82258/1/ejqtde_2023_008.pdf  |z Dokumentum-elérés