Ulam-Hyers stability and exponentially dichotomic evolution equations in Banach spaces

For finite-dimensional linear differential systems with bounded coefficients we prove that their exponential dichotomy on R is equivalent to their Ulam–Hyers stability on R with uniqueness. We also consider abstract non-autonomous evolution equations which are exponentially bounded and exponentially...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Buică Adriana
Dokumentumtípus: Folyóirat
Megjelent: 2023
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Banach tér, Evolúciós egyenlet
doi:10.14232/ejqtde.2023.1.8

Online Access:http://acta.bibl.u-szeged.hu/82258
Leíró adatok
Tartalmi kivonat:For finite-dimensional linear differential systems with bounded coefficients we prove that their exponential dichotomy on R is equivalent to their Ulam–Hyers stability on R with uniqueness. We also consider abstract non-autonomous evolution equations which are exponentially bounded and exponentially dichotomic and prove that Ulam– Hyers stability with uniqueness is maintained when perturbing them with a nonlinear term having a sufficiently small Lipschitz constant.
Terjedelem/Fizikai jellemzők:10
ISSN:1417-3875