Semilinear heat equation with singular terms

The main goal of this paper is to analyze the existence and nonexistence as well as the regularity of positive solutions for the following initial parabolic problem ∂tu − ∆u = µ u |x| 2 f u in ΩT := Ω × (0, T), u = 0 on ∂Ω × (0, T), u(x, 0) = u0(x) in Ω, where Ω ⊂ RN, N ≥ 3, is a bounded open, σ ≥ 0...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ould Khatri Mohamed Mahmoud
Youssfi Ahmed
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Hőegyenlet - féllineáris
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.69

Online Access:http://acta.bibl.u-szeged.hu/78354
LEADER 01551nas a2200229 i 4500
001 acta78354
005 20230313131904.0
008 230313s2022 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2022.1.69  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 2 |a Ould Khatri Mohamed Mahmoud 
245 1 0 |a Semilinear heat equation with singular terms  |h [elektronikus dokumentum] /  |c  Ould Khatri Mohamed Mahmoud 
260 |c 2022 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a The main goal of this paper is to analyze the existence and nonexistence as well as the regularity of positive solutions for the following initial parabolic problem ∂tu − ∆u = µ u |x| 2 f u in ΩT := Ω × (0, T), u = 0 on ∂Ω × (0, T), u(x, 0) = u0(x) in Ω, where Ω ⊂ RN, N ≥ 3, is a bounded open, σ ≥ 0 and µ > 0 are real constants and f ∈ L m(ΩT), m ≥ 1, and u0 are nonnegative functions. The study we lead shows that the existence of solutions depends on σ and the summability of the datum f as well as on the interplay between µ and the best constant in the Hardy inequality. Regularity results of solutions, when they exist, are also provided. Furthermore, we prove uniqueness of finite energy solutions. 
650 4 |a Természettudományok 
650 4 |a Matematika 
695 |a Hőegyenlet - féllineáris 
700 0 1 |a Youssfi Ahmed  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/78354/1/ejqtde_2022_069.pdf  |z Dokumentum-elérés