Semilinear heat equation with singular terms
The main goal of this paper is to analyze the existence and nonexistence as well as the regularity of positive solutions for the following initial parabolic problem ∂tu − ∆u = µ u |x| 2 f u in ΩT := Ω × (0, T), u = 0 on ∂Ω × (0, T), u(x, 0) = u0(x) in Ω, where Ω ⊂ RN, N ≥ 3, is a bounded open, σ ≥ 0...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Hőegyenlet - féllineáris |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.69 |
Online Access: | http://acta.bibl.u-szeged.hu/78354 |
LEADER | 01551nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta78354 | ||
005 | 20230313131904.0 | ||
008 | 230313s2022 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2022.1.69 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 2 | |a Ould Khatri Mohamed Mahmoud | |
245 | 1 | 0 | |a Semilinear heat equation with singular terms |h [elektronikus dokumentum] / |c Ould Khatri Mohamed Mahmoud |
260 | |c 2022 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a The main goal of this paper is to analyze the existence and nonexistence as well as the regularity of positive solutions for the following initial parabolic problem ∂tu − ∆u = µ u |x| 2 f u in ΩT := Ω × (0, T), u = 0 on ∂Ω × (0, T), u(x, 0) = u0(x) in Ω, where Ω ⊂ RN, N ≥ 3, is a bounded open, σ ≥ 0 and µ > 0 are real constants and f ∈ L m(ΩT), m ≥ 1, and u0 are nonnegative functions. The study we lead shows that the existence of solutions depends on σ and the summability of the datum f as well as on the interplay between µ and the best constant in the Hardy inequality. Regularity results of solutions, when they exist, are also provided. Furthermore, we prove uniqueness of finite energy solutions. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Matematika | |
695 | |a Hőegyenlet - féllineáris | ||
700 | 0 | 1 | |a Youssfi Ahmed |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/78354/1/ejqtde_2022_069.pdf |z Dokumentum-elérés |