On the localization and numerical computation of positive radial solutions for ϕ-Laplace equations in the annulus

The paper deals with the existence and localization of positive radial solutions for stationary partial differential equations involving a general ϕ-Laplace operator in the annulus. Three sets of boundary conditions are considered: Dirichlet–Neumann, Neumann–Dirichlet and Dirichlet–Dirichlet. The re...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Rodríguez-López Jorge
Precup Radu
Gheorghiu Calin-Ioan
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:ϕ-Laplace operátor, Harnack típusú egyenlőtlenség, Laplace-egyenlet
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.47

Online Access:http://acta.bibl.u-szeged.hu/78332
Leíró adatok
Tartalmi kivonat:The paper deals with the existence and localization of positive radial solutions for stationary partial differential equations involving a general ϕ-Laplace operator in the annulus. Three sets of boundary conditions are considered: Dirichlet–Neumann, Neumann–Dirichlet and Dirichlet–Dirichlet. The results are based on the homotopy version of Krasnosel’ski˘ı’s fixed point theorem and Harnack type inequalities, first established for each one of the boundary conditions. As a consequence, the problem of multiple solutions is solved in a natural way. Numerical experiments confirming the theory, one for each of the three sets of boundary conditions, are performed by using the MATLAB object-oriented package Chebfun.
ISSN:1417-3875