Stability of delay equations
For a large class of nonautonomous linear delay equations with distributed delay, we obtain the equivalence of hyperbolicity, with the existence of an exponential dichotomy, and Ulam–Hyers stability. In particular, for linear equations with constant or periodic coefficients and with a simple spectru...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet - késleltetett |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.45 |
Online Access: | http://acta.bibl.u-szeged.hu/78330 |
LEADER | 01264nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta78330 | ||
005 | 20230313093811.0 | ||
008 | 230313s2022 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2022.1.45 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Barreira Luis | |
245 | 1 | 0 | |a Stability of delay equations |h [elektronikus dokumentum] / |c Barreira Luis |
260 | |c 2022 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a For a large class of nonautonomous linear delay equations with distributed delay, we obtain the equivalence of hyperbolicity, with the existence of an exponential dichotomy, and Ulam–Hyers stability. In particular, for linear equations with constant or periodic coefficients and with a simple spectrum these two properties are equivalent. We also show that any linear delay equation with an exponential dichotomy and its sufficiently small Lipschitz perturbations are Ulam–Hyers stable. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Matematika | |
695 | |a Differenciálegyenlet - késleltetett | ||
700 | 0 | 1 | |a Valls Claudia |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/78330/1/ejqtde_2022_045.pdf |z Dokumentum-elérés |