Stability of delay equations

For a large class of nonautonomous linear delay equations with distributed delay, we obtain the equivalence of hyperbolicity, with the existence of an exponential dichotomy, and Ulam–Hyers stability. In particular, for linear equations with constant or periodic coefficients and with a simple spectru...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Barreira Luis
Valls Claudia
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - késleltetett
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.45

Online Access:http://acta.bibl.u-szeged.hu/78330
LEADER 01264nas a2200229 i 4500
001 acta78330
005 20230313093811.0
008 230313s2022 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2022.1.45  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Barreira Luis 
245 1 0 |a Stability of delay equations  |h [elektronikus dokumentum] /  |c  Barreira Luis 
260 |c 2022 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a For a large class of nonautonomous linear delay equations with distributed delay, we obtain the equivalence of hyperbolicity, with the existence of an exponential dichotomy, and Ulam–Hyers stability. In particular, for linear equations with constant or periodic coefficients and with a simple spectrum these two properties are equivalent. We also show that any linear delay equation with an exponential dichotomy and its sufficiently small Lipschitz perturbations are Ulam–Hyers stable. 
650 4 |a Természettudományok 
650 4 |a Matematika 
695 |a Differenciálegyenlet - késleltetett 
700 0 1 |a Valls Claudia  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/78330/1/ejqtde_2022_045.pdf  |z Dokumentum-elérés