Stability of delay equations

For a large class of nonautonomous linear delay equations with distributed delay, we obtain the equivalence of hyperbolicity, with the existence of an exponential dichotomy, and Ulam–Hyers stability. In particular, for linear equations with constant or periodic coefficients and with a simple spectru...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Barreira Luis
Valls Claudia
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - késleltetett
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.45

Online Access:http://acta.bibl.u-szeged.hu/78330
Leíró adatok
Tartalmi kivonat:For a large class of nonautonomous linear delay equations with distributed delay, we obtain the equivalence of hyperbolicity, with the existence of an exponential dichotomy, and Ulam–Hyers stability. In particular, for linear equations with constant or periodic coefficients and with a simple spectrum these two properties are equivalent. We also show that any linear delay equation with an exponential dichotomy and its sufficiently small Lipschitz perturbations are Ulam–Hyers stable.
ISSN:1417-3875