Existence of positive ground state solutions of critical nonlinear Klein-Gordon-Maxwell systems

In this paper we study the following nonlinear Klein–Gordon–Maxwell system −∆u + [m2 0 − (ω + φ) 2 ]u = f(u) in R3 ∆φ = (ω + φ)u in R3 where 0 < ω < m0. Based on an abstract critical point theorem established by Jeanjean, the existence of positive ground state solutions is proved, when the non...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Xu Liping
Chen Haibo
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Klein-Gordon-Maxwell rendszer - nemlineáris
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.44

Online Access:http://acta.bibl.u-szeged.hu/78329
Leíró adatok
Tartalmi kivonat:In this paper we study the following nonlinear Klein–Gordon–Maxwell system −∆u + [m2 0 − (ω + φ) 2 ]u = f(u) in R3 ∆φ = (ω + φ)u in R3 where 0 < ω < m0. Based on an abstract critical point theorem established by Jeanjean, the existence of positive ground state solutions is proved, when the nonlinear term f(u) exhibits linear near zero and a general critical growth near infinity. Compared with other recent literature, some different arguments have been introduced and some results are extended.
ISSN:1417-3875