Strong solutions for singular Dirichlet elliptic problems
We prove an existence result for strong solutions u ∈ W2,q (Ω) of singular semilinear elliptic problems of the form −∆u = g (·, u) in Ω, u = τ on ∂Ω, where 1 < q < ∞, Ω is a bounded domain in Rn with C 2 boundary, 0 ≤ τ ∈ W 2− 1 q ,q and with g : Ω × (0, ∞) → [0, ∞) belonging to a class of non...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Dirichlet probléma, Differenciálegyenlet |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.40 |
Online Access: | http://acta.bibl.u-szeged.hu/76541 |
Tartalmi kivonat: | We prove an existence result for strong solutions u ∈ W2,q (Ω) of singular semilinear elliptic problems of the form −∆u = g (·, u) in Ω, u = τ on ∂Ω, where 1 < q < ∞, Ω is a bounded domain in Rn with C 2 boundary, 0 ≤ τ ∈ W 2− 1 q ,q and with g : Ω × (0, ∞) → [0, ∞) belonging to a class of nonnegative Carathéodory functions, which may be singular at s = 0 and also at x ∈ S for some suitable subsets S ⊂ Ω. In addition, we give results concerning the uniqueness and regularity of the solutions. A related problem on punctured domains is also considered. |
---|---|
Terjedelem/Fizikai jellemzők: | 20 |
ISSN: | 1417-3875 |