The existence of solutions for the modified (p(x), q(x))-Kirchhoff equation

We consider the Dirichlet problem Kp p(x) u(x) − ∆ Kq q(x) u(x) = f(x, u(x), ∇u(x)) in Ω, u = 0, driven by the sum of a p(x)-Laplacian operator and of a q(x)-Laplacian operator, both of them weighted by indefinite (sign-changing) Kirchhoff type terms. We establish the existence of weak solution and...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Figueiredo Giovany M.
Vetro Calogero
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet, Kirchhoff egyenlet, Dirichlet probléma
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/76540
Leíró adatok
Tartalmi kivonat:We consider the Dirichlet problem Kp p(x) u(x) − ∆ Kq q(x) u(x) = f(x, u(x), ∇u(x)) in Ω, u = 0, driven by the sum of a p(x)-Laplacian operator and of a q(x)-Laplacian operator, both of them weighted by indefinite (sign-changing) Kirchhoff type terms. We establish the existence of weak solution and strong generalized solution, using topological tools (properties of Galerkin basis and of Nemitsky map). In the particular case of a positive Kirchhoff term, we obtain the existence of weak solution (= strong generalized solution), using the properties of pseudomonotone operators.
Terjedelem/Fizikai jellemzők:16
ISSN:1417-3875