Syntax-based data augmentation for Hungarian-English machine translation

We train Transformer-based neural machine translation models for Hungarian-English and English-Hungarian using the Hunglish2 corpus. Our best models achieve a BLEU score of 40.0 on HungarianEnglish and 33.4 on English-Hungarian. Furthermore, we present results on an ongoing work about syntax-based a...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Nagy Attila
Nanys Patrick
Frey Konrád Balázs
Bial Bence
Ács Judit
Testületi szerző: Magyar számítógépes nyelvészeti konferencia (18.) (2022) (Szeged)
Dokumentumtípus: Könyv része
Megjelent: 2022
Sorozat:Magyar Számítógépes Nyelvészeti Konferencia 18
Kulcsszavak:Nyelvészet - számítógép alkalmazása, Gépi fordítás - számítógép alkalmazása
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/75885
Leíró adatok
Tartalmi kivonat:We train Transformer-based neural machine translation models for Hungarian-English and English-Hungarian using the Hunglish2 corpus. Our best models achieve a BLEU score of 40.0 on HungarianEnglish and 33.4 on English-Hungarian. Furthermore, we present results on an ongoing work about syntax-based augmentation for neural machine translation. Both our code and models are publicly available.
Terjedelem/Fizikai jellemzők:343-356
ISBN:978-963-306-848-9