Lebesgue points and Cesàro summability of higher dimensional Fourier series over a cone

We introduce a new concept of Lebesgue points, the so-called ωLebesgue points, where ω > 0. As a generalization of the classical Lebesgue’s theorem, we prove that the Cesàro means σ a nf of the Fourier series of a multidimensional function f ∈ L1(T d ) converge to f at each ω-Lebesgue point (0 &l...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Weisz Ferenc
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:Acta scientiarum mathematicarum 87 No. 3-4
Kulcsszavak:Fourier-sor, Lebesgue integrál, Analízis - matematikai
Tárgyszavak:
doi:10.14232/actasm-021-614-3

Online Access:http://acta.bibl.u-szeged.hu/75852
Leíró adatok
Tartalmi kivonat:We introduce a new concept of Lebesgue points, the so-called ωLebesgue points, where ω > 0. As a generalization of the classical Lebesgue’s theorem, we prove that the Cesàro means σ a nf of the Fourier series of a multidimensional function f ∈ L1(T d ) converge to f at each ω-Lebesgue point (0 < ω < α) as n → ∞.
Terjedelem/Fizikai jellemzők:505-515
ISSN:2064-8316