Existence, nonexistence and multiplicity of positive solutions for singular quasilinear problems

In the present paper we deal with a quasilinear problem involving a singular term and a parametric superlinear perturbation. We are interested in the existence, nonexistence and multiplicity of positive solutions as the parameter λ > 0 varies. In our first result, the superlinear perturbation has...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Lima Alves Ricardo
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.13

Online Access:http://acta.bibl.u-szeged.hu/75828
Leíró adatok
Tartalmi kivonat:In the present paper we deal with a quasilinear problem involving a singular term and a parametric superlinear perturbation. We are interested in the existence, nonexistence and multiplicity of positive solutions as the parameter λ > 0 varies. In our first result, the superlinear perturbation has an arbitrary growth and we obtain the existence of a solution for the problem by using the sub-supersolution method. For the second result, the superlinear perturbation has subcritical growth and we employ the Mountain Pass Theorem to show the existence of a second solution.
Terjedelem/Fizikai jellemzők:27
ISSN:1417-3875