Existence, nonexistence and multiplicity of positive solutions for singular quasilinear problems
In the present paper we deal with a quasilinear problem involving a singular term and a parametric superlinear perturbation. We are interested in the existence, nonexistence and multiplicity of positive solutions as the parameter λ > 0 varies. In our first result, the superlinear perturbation has...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.13 |
Online Access: | http://acta.bibl.u-szeged.hu/75828 |
Tartalmi kivonat: | In the present paper we deal with a quasilinear problem involving a singular term and a parametric superlinear perturbation. We are interested in the existence, nonexistence and multiplicity of positive solutions as the parameter λ > 0 varies. In our first result, the superlinear perturbation has an arbitrary growth and we obtain the existence of a solution for the problem by using the sub-supersolution method. For the second result, the superlinear perturbation has subcritical growth and we employ the Mountain Pass Theorem to show the existence of a second solution. |
---|---|
Terjedelem/Fizikai jellemzők: | 27 |
ISSN: | 1417-3875 |