Footvector representation of curves and surfaces

This paper proposes a foot mapping-based representation of curves and surfaces which is a geometric generalization of signed distance functions. We present a first-order characterization of the footvector mapping in terms of the differential geometric invariants of the represented shape and quantify...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Valasek Gábor
Bálint Csaba
Leitereg András
Testületi szerző: Conference of PhD Students in Computer Science (12.) (2020) (Szeged)
Dokumentumtípus: Cikk
Megjelent: University of Szeged, Institute of Informatics Szeged 2021
Sorozat:Acta cybernetica 25 No. 2
Kulcsszavak:Számítógépes grafika - geometria
Tárgyszavak:
doi:10.14232/actacyb.290145

Online Access:http://acta.bibl.u-szeged.hu/75623
Leíró adatok
Tartalmi kivonat:This paper proposes a foot mapping-based representation of curves and surfaces which is a geometric generalization of signed distance functions. We present a first-order characterization of the footvector mapping in terms of the differential geometric invariants of the represented shape and quantify the dependence of the spatial partial derivatives of the footvector mapping with respect to the principal curvatures at the footpoint. The practical applicability of foot mapping representations is highlighted by several fast iterative methods to compute the exact footvector mapping of the offset surface of CSG trees. The set operations for footpoint mappings are higher-order functions that map a tuple of functions to a single function, which poses a challenge for GPU implementations. We propose a code generation framework to overcome this that transforms CSG trees to the GLSL shader code.
Terjedelem/Fizikai jellemzők:555-573
ISSN:0324-721X