Speech de-identification with deep neural networks

Cloud-based speech services are powerful practical tools but the privacy of the speakers raises important legal concerns when exposed to the Internet. We propose a deep neural network solution that removes personal characteristics from human speech by converting it to the voice of a Text-to-Speech (...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Fodor Ádám
Kopácsi László
Milacski Zoltán Ádám
Lőrincz András
Testületi szerző: Conference of PhD Students in Computer Science (12.) (2020) (Szeged)
Dokumentumtípus: Cikk
Megjelent: University of Szeged, Institute of Informatics Szeged 2021
Sorozat:Acta cybernetica 25 No. 2
Kulcsszavak:Beszédfeldolgozás, Adatvédelem, Programozás
Tárgyszavak:
doi:10.14232/actacyb.288282

Online Access:http://acta.bibl.u-szeged.hu/75609
Leíró adatok
Tartalmi kivonat:Cloud-based speech services are powerful practical tools but the privacy of the speakers raises important legal concerns when exposed to the Internet. We propose a deep neural network solution that removes personal characteristics from human speech by converting it to the voice of a Text-to-Speech (TTS) system before sending the utterance to the cloud. The network learns to transcode sequences of vocoder parameters, delta and delta-delta features of human speech to those of the TTS engine. We evaluated several TTS systems, vocoders and audio alignment techniques. We measured the performance of our method by (i) comparing the result of speech recognition on the de-identified utterances with the original texts, (ii) computing the Mel-Cepstral Distortion of the aligned TTS and the transcoded sequences, and (iii) questioning human participants in A-not-B, 2AFC and 6AFC tasks. Our approach achieves the level required by diverse applications.
Terjedelem/Fizikai jellemzők:257-269
ISSN:0324-721X