Infinitely many weak solutions for perturbed nonlinear elliptic Neumann problem in Musielak-Orlicz-Sobolev framework
In this paper, we investigate a class of problems with Neumann boundary data in Musielak–Orlicz–Sobolev spaces W1LM(Ω). We prove the existence of infinitely many weak solutions under some hypotheses. We also provide some particular cases and a concrete example in order to illustrate the main results...
Elmentve itt :
Szerzők: |
Elemine Vall Mohamed Saad Bouh Ahmed Ahmed |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Acta scientiarum mathematicarum
86 No. 3-4 |
Kulcsszavak: | Matematika |
doi: | 10.14232/actasm-020-161-9 |
Online Access: | http://acta.bibl.u-szeged.hu/73906 |
Hasonló tételek
-
Infinitely many solutions for perturbed Kirchhoff type problems
Szerző: Wang Weibing
Megjelent: (2019) -
Infinitely many solutions for fractional Kirchhoff-Sobolev-Hardy critical problems
Szerző: Ambrosio Vincenzo, et al.
Megjelent: (2019) -
Infinitely many nodal solutions for a class of quasilinear elliptic equations
Szerző: Yang Xiaolong
Megjelent: (2021) -
On weakly (weakly*) exposed points of Orlicz sequence spaces
Szerző: Tingfu Wang, et al.
Megjelent: (1997) -
Infinitely many solutions for elliptic problems in RN involving the p(x)-Laplacian
Szerző: Zhou Qing-Mei, et al.
Megjelent: (2015)