Infinitely many weak solutions for perturbed nonlinear elliptic Neumann problem in Musielak-Orlicz-Sobolev framework
In this paper, we investigate a class of problems with Neumann boundary data in Musielak–Orlicz–Sobolev spaces W1LM(Ω). We prove the existence of infinitely many weak solutions under some hypotheses. We also provide some particular cases and a concrete example in order to illustrate the main results...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Acta scientiarum mathematicarum
86 No. 3-4 |
Kulcsszavak: | Matematika |
doi: | 10.14232/actasm-020-161-9 |
Online Access: | http://acta.bibl.u-szeged.hu/73906 |
Tartalmi kivonat: | In this paper, we investigate a class of problems with Neumann boundary data in Musielak–Orlicz–Sobolev spaces W1LM(Ω). We prove the existence of infinitely many weak solutions under some hypotheses. We also provide some particular cases and a concrete example in order to illustrate the main results. Our results are an improvement and generalization of the relative results [21]. |
---|---|
Terjedelem/Fizikai jellemzők: | 601-616 |
ISSN: | 2064-8316 |