Compactness of Riemann-Liouville fractional integral operators
We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations : special edition
4 No. 84 |
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.84 |
Online Access: | http://acta.bibl.u-szeged.hu/73774 |
Tartalmi kivonat: | We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral radii of the Riemann–Liouville fractional operators are zero. |
---|---|
Terjedelem/Fizikai jellemzők: | 15 |
ISSN: | 1417-3875 |