Decaying positive global solutions of second order difference equations with mean curvature operator

A boundary value problem on an unbounded domain, associated to difference equations with the Euclidean mean curvature operator is considered. The existence of solutions which are positive on the whole domain and decaying at infinity is examined by proving new Sturm comparison theorems for linear dif...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Došlá Zuzana
Matucci Serena
Řehák Pavel
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 4 No. 72
Kulcsszavak:Másodrendű differenciálegyenlet
doi:10.14232/ejqtde.2020.1.72

Online Access:http://acta.bibl.u-szeged.hu/73762
Leíró adatok
Tartalmi kivonat:A boundary value problem on an unbounded domain, associated to difference equations with the Euclidean mean curvature operator is considered. The existence of solutions which are positive on the whole domain and decaying at infinity is examined by proving new Sturm comparison theorems for linear difference equations and using a fixed point approach based on a linearization device. The process of discretization of the boundary value problem on the unbounded domain is examined, and some discrepancies between the discrete and the continuous cases are pointed out, too.
Terjedelem/Fizikai jellemzők:16
ISSN:1417-3875