Note on stability conditions for structured population dynamics models

We consider a characteristic equation to analyze asymptotic stability of a scalar renewal equation, motivated by structured population dynamics models. The characteristic equation is given by 1 = Z ∞ 0 k(a)e −λa da, where k : R+ → R can be decomposed into positive and negative parts. It is shown tha...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Nakata Yukihiko
Dokumentumtípus: Folyóirat
Megjelent: 2016
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 2 No. 78
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2016.1.78

Online Access:http://acta.bibl.u-szeged.hu/73745
Leíró adatok
Tartalmi kivonat:We consider a characteristic equation to analyze asymptotic stability of a scalar renewal equation, motivated by structured population dynamics models. The characteristic equation is given by 1 = Z ∞ 0 k(a)e −λa da, where k : R+ → R can be decomposed into positive and negative parts. It is shown that if delayed negative feedback is characterized by a convex function, then all roots of the characteristic equation locate in the left half complex plane.
Terjedelem/Fizikai jellemzők:14
ISSN:1417-3875