Note on stability conditions for structured population dynamics models
We consider a characteristic equation to analyze asymptotic stability of a scalar renewal equation, motivated by structured population dynamics models. The characteristic equation is given by 1 = Z ∞ 0 k(a)e −λa da, where k : R+ → R can be decomposed into positive and negative parts. It is shown tha...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2016
|
Sorozat: | Electronic journal of qualitative theory of differential equations : special edition
2 No. 78 |
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2016.1.78 |
Online Access: | http://acta.bibl.u-szeged.hu/73745 |
Tartalmi kivonat: | We consider a characteristic equation to analyze asymptotic stability of a scalar renewal equation, motivated by structured population dynamics models. The characteristic equation is given by 1 = Z ∞ 0 k(a)e −λa da, where k : R+ → R can be decomposed into positive and negative parts. It is shown that if delayed negative feedback is characterized by a convex function, then all roots of the characteristic equation locate in the left half complex plane. |
---|---|
Terjedelem/Fizikai jellemzők: | 14 |
ISSN: | 1417-3875 |