Analytical estimations of limit cycle amplitude for delay-differential equations
The amplitude of limit cycles arising from Hopf bifurcation is estimated for nonlinear delay-differential equations by means of analytical formulas. An improved analytical estimation is introduced, which allows more accurate quantitative prediction of periodic solutions than the standard approach th...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2016
|
Sorozat: | Electronic journal of qualitative theory of differential equations : special edition
2 No. 77 |
Kulcsszavak: | Differenciálegyenlet - késleltetett, Bifurkáció |
doi: | 10.14232/ejqtde.2016.1.77 |
Online Access: | http://acta.bibl.u-szeged.hu/73744 |
Tartalmi kivonat: | The amplitude of limit cycles arising from Hopf bifurcation is estimated for nonlinear delay-differential equations by means of analytical formulas. An improved analytical estimation is introduced, which allows more accurate quantitative prediction of periodic solutions than the standard approach that formulates the amplitude as a square-root function of the bifurcation parameter. The improved estimation is based on special global properties of the system: the method can be applied if the limit cycle blows up and disappears at a certain value of the bifurcation parameter. As an illustrative example, the improved analytical formula is applied to the problem of stick balancing. |
---|---|
Terjedelem/Fizikai jellemzők: | 10 |
ISSN: | 1417-3875 |