Asymptotic formulas for a scalar linear delay differential equation
The linear delay differential equation x 0 (t) = p(t)x(t − r) is considered, where r > 0 and the coefficient p : [t0, ∞) → R is a continuous function such that p(t) → 0 as t → ∞. In a recent paper [M. Pituk, G. Röst, Bound. Value Probl. 2014:114] an asymptotic description of the solutions has bee...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2016
|
Sorozat: | Electronic journal of qualitative theory of differential equations : special edition
2 No. 72 |
Kulcsszavak: | Differenciálegyenlet - késleltetett |
doi: | 10.14232/ejqtde.2016.1.72 |
Online Access: | http://acta.bibl.u-szeged.hu/73739 |
LEADER | 01443nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta73739 | ||
005 | 20211112094207.0 | ||
008 | 211111s2016 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2016.1.72 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Győri István | |
245 | 1 | 0 | |a Asymptotic formulas for a scalar linear delay differential equation |h [elektronikus dokumentum] / |c Győri István |
260 | |c 2016 | ||
300 | |a 14 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations : special edition |v 2 No. 72 | |
520 | 3 | |a The linear delay differential equation x 0 (t) = p(t)x(t − r) is considered, where r > 0 and the coefficient p : [t0, ∞) → R is a continuous function such that p(t) → 0 as t → ∞. In a recent paper [M. Pituk, G. Röst, Bound. Value Probl. 2014:114] an asymptotic description of the solutions has been given in terms of a special solution of the associated formal adjoint equation and the initial data. In this paper, we give a representation of the special solution of the formal adjoint equation. Under some additional conditions, the representation theorem yields explicit asymptotic formulas for the solutions as t → ∞. | |
695 | |a Differenciálegyenlet - késleltetett | ||
700 | 0 | 1 | |a Pituk Mihály |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/73739/1/ejqtde_spec_002_2016_072.pdf |z Dokumentum-elérés |