Asymptotic formulas for a scalar linear delay differential equation

The linear delay differential equation x 0 (t) = p(t)x(t − r) is considered, where r > 0 and the coefficient p : [t0, ∞) → R is a continuous function such that p(t) → 0 as t → ∞. In a recent paper [M. Pituk, G. Röst, Bound. Value Probl. 2014:114] an asymptotic description of the solutions has bee...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Győri István
Pituk Mihály
Dokumentumtípus: Folyóirat
Megjelent: 2016
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 2 No. 72
Kulcsszavak:Differenciálegyenlet - késleltetett
doi:10.14232/ejqtde.2016.1.72

Online Access:http://acta.bibl.u-szeged.hu/73739
Leíró adatok
Tartalmi kivonat:The linear delay differential equation x 0 (t) = p(t)x(t − r) is considered, where r > 0 and the coefficient p : [t0, ∞) → R is a continuous function such that p(t) → 0 as t → ∞. In a recent paper [M. Pituk, G. Röst, Bound. Value Probl. 2014:114] an asymptotic description of the solutions has been given in terms of a special solution of the associated formal adjoint equation and the initial data. In this paper, we give a representation of the special solution of the formal adjoint equation. Under some additional conditions, the representation theorem yields explicit asymptotic formulas for the solutions as t → ∞.
Terjedelem/Fizikai jellemzők:14
ISSN:1417-3875