On solutions of space-fractional diffusion equations by means of potential wells
In this paper, we study the initial boundary value problem of space-fractional diffusion equations. First, we introduce a family of potential wells. Then we show the existence of global weak solutions, provided that the initial energy J(u0) is positive and less than the potential well depth d. Final...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2016
|
Sorozat: | Electronic journal of qualitative theory of differential equations : special edition
2 No. 70 |
Kulcsszavak: | Differenciálegyenlet - késleltetett |
doi: | 10.14232/ejqtde.2016.1.70 |
Online Access: | http://acta.bibl.u-szeged.hu/73737 |
Tartalmi kivonat: | In this paper, we study the initial boundary value problem of space-fractional diffusion equations. First, we introduce a family of potential wells. Then we show the existence of global weak solutions, provided that the initial energy J(u0) is positive and less than the potential well depth d. Finally, we establish the vacuum isolating and blow up of strong solutions. |
---|---|
Terjedelem/Fizikai jellemzők: | 17 |
ISSN: | 1417-3875 |