On solutions of space-fractional diffusion equations by means of potential wells

In this paper, we study the initial boundary value problem of space-fractional diffusion equations. First, we introduce a family of potential wells. Then we show the existence of global weak solutions, provided that the initial energy J(u0) is positive and less than the potential well depth d. Final...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Fu Yongqiang
Pucci Patrizia
Dokumentumtípus: Folyóirat
Megjelent: 2016
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 2 No. 70
Kulcsszavak:Differenciálegyenlet - késleltetett
doi:10.14232/ejqtde.2016.1.70

Online Access:http://acta.bibl.u-szeged.hu/73737
Leíró adatok
Tartalmi kivonat:In this paper, we study the initial boundary value problem of space-fractional diffusion equations. First, we introduce a family of potential wells. Then we show the existence of global weak solutions, provided that the initial energy J(u0) is positive and less than the potential well depth d. Finally, we establish the vacuum isolating and blow up of strong solutions.
Terjedelem/Fizikai jellemzők:17
ISSN:1417-3875