Convective instability in a diffusive predator-prey system

It is well known that biological pattern formation is the Turing mechanism, in which a homogeneous steady state is destabilized by the addition of diffusion, though it is stable in the kinetic ODEs. However, steady states that are unstable in the kinetic ODEs are rarely mentioned. This paper concern...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Chen Hui
Xu Xuelian
Dokumentumtípus: Folyóirat
Megjelent: 2021
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2021.1.74

Online Access:http://acta.bibl.u-szeged.hu/73726
Leíró adatok
Tartalmi kivonat:It is well known that biological pattern formation is the Turing mechanism, in which a homogeneous steady state is destabilized by the addition of diffusion, though it is stable in the kinetic ODEs. However, steady states that are unstable in the kinetic ODEs are rarely mentioned. This paper concerns a reaction diffusion advection system under Neumann boundary conditions, where steady states that are unstable in the kinetic ODEs. Our results provide a stabilization strategy for the same steady state, the combination of large advection rate and small diffusion rate can stabilize the homogeneous equilibrium. Moreover, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis.
Terjedelem/Fizikai jellemzők:9
ISSN:1417-3875