Ground state solution for a class of supercritical nonlocal equations with variable exponent
In this paper, we obtain the existence of positive critical point with least energy for a class of functionals involving nonlocal and supercritical variable exponent nonlinearities by applying the variational method and approximation techniques. We apply our results to the supercritical Schrödinger–...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2021
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-Poisson típusú rendszer, Kirchhoff típusú egyenletek, Differenciálegyenlet |
doi: | 10.14232/ejqtde.2021.1.59 |
Online Access: | http://acta.bibl.u-szeged.hu/73711 |
Tartalmi kivonat: | In this paper, we obtain the existence of positive critical point with least energy for a class of functionals involving nonlocal and supercritical variable exponent nonlinearities by applying the variational method and approximation techniques. We apply our results to the supercritical Schrödinger–Poisson type systems and supercritical Kirchhoff type equations with variable exponent, respectively. |
---|---|
Terjedelem/Fizikai jellemzők: | 29 |
ISSN: | 1417-3875 |