Periodic solutions of second order Hamiltonian systems with nonlinearity of general linear growth

In this paper we consider a class of second order Hamiltonian system with the nonlinearity of linear growth. Compared with the existing results, we do not assume an asymptotic of the nonlinearity at infinity to exist. Moreover, we allow the system to be resonant at zero. Under some general condition...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Liu Guanggang
Dokumentumtípus: Folyóirat
Megjelent: 2021
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Hamilton-rendszer
doi:10.14232/ejqtde.2021.1.27

Online Access:http://acta.bibl.u-szeged.hu/73679
Leíró adatok
Tartalmi kivonat:In this paper we consider a class of second order Hamiltonian system with the nonlinearity of linear growth. Compared with the existing results, we do not assume an asymptotic of the nonlinearity at infinity to exist. Moreover, we allow the system to be resonant at zero. Under some general conditions, we will establish the existence and multiplicity of nontrivial periodic solutions by using the Morse theory and two critical point theorems.
Terjedelem/Fizikai jellemzők:19
ISSN:1417-3875