Compactness of Riemann-Liouville fractional integral operators

We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Lan Kunquan
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.84

Online Access:http://acta.bibl.u-szeged.hu/73645
Leíró adatok
Tartalmi kivonat:We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral radii of the Riemann–Liouville fractional operators are zero.
Terjedelem/Fizikai jellemzők:15
ISSN:1417-3875